0

Full Content is available to subscribers

Subscribe/Learn More  >

Study on Condensation Behavior in Two-Phase Flow Through a Microchannel

[+] Author Affiliations
Genki Takeuchi, Akiko Fujiwara, Yutaka Abe

University of Tsukuba, Tsukuba, Ibaraki, Japan

Yutaka Suzuki

WELCON lnc., Niigata, Niigata, Japan

Paper No. MNHT2008-52201, pp. 739-746; 8 pages
doi:10.1115/MNHT2008-52201
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

It is requested to develop a small and high performance heat exchanger for small size energy equipments such as fuel cells and CO2 heat pumps, et.al... In author’s previous studies, a high pressure resistant microchannel layers stacked heat exchanger has been developed. The heat exchanger is manufactured by diffusion bond technique. It can be used under high pressure condition larger than 15 MPa. Due to the high pressure resistance, the device can be applied for high flow rate condition with boiling and condensation. The objectives of the present study are to estimate the heat transfer performance of the heat exchanger and to investigate the thermal hydraulic behavior in the microchannel. The flow pattern in a glass capillary tube is observed by fabricating visualization system. As the results, it is measured that the present device attained high heat transfer quantity of approximately 7000 W on steam condensation despite the weight is only 230 g. The measurement results clarified that the device achieves very high heat transfer rate of hundreds times larger than that of the existing heat exchanger. Furthermore, visualization experiment with single glass pipe is conducted to clarify the flow condensation behavior in the microchannel. In the experiment, the microchannel of Pyrex glass is surrounded by the subcooling water. The flow patterns can visualized from the side of the microchannel. Flow patterns observations are conducted for various inlet pressure and temperatures of the subcooling water. It is observed that the continuous flow transition from annular and injection flow to slug-bubble flow in the microchannel. The reason of large heat transfer rate per unit volume is discussed as relating to narrow interval of each microchannels and small thermal resistance.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In