0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Polymer Morphology on the Rheological Behavior of Melt Within Micro-Channels

[+] Author Affiliations
Shia-Chung Chen, Song-Wei Huang

Chung Yuan University, Chung-Li, Taiwan, R.O.C.

Rean-Der Chien

Chung Yuan University; Nanya Institute of Technology, Chung-Li, Taiwan, R.O.C.

Chun-Sheng Chen

Lunghwa University of Science and Technology, Guishan, Taiwan, R.O.C.

Paper No. MNHT2008-52147, pp. 707-714; 8 pages
doi:10.1115/MNHT2008-52147
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

Micro molding has shown great commercial potential in recent years and determination of the rheological behavior of the polymer melt within micro structured geometry is vital for accurate simulation modeling of micro molding. The lack of commercial equipment is one of main hurdles in the investigation of micro melt rheology. In this study, a melt viscosity measurement system for low and high density polyethylene polymer melt flowing through micro-channels was established using a micro channel mold operated at a mold temperature as high as the melt temperature. For measured pressure drop and volumetric flow rate, capillary flow model was used for the calculation of viscosity utilizing Rabinowitsch correction. The calculated results of low crystallinity LDPE resin were also compared with those of high crystallinity HDPE resin to discuss the effect of degree of crystallinity on the viscosity characteristics of polymer within micro-channels. It was found that the measured LDPE and HDPE viscosity values in the test ranges are significantly lower (about 40∼56% and 22∼29% for LDPE and HDPE, respectively, flowing through a channel size of 150μm) than those obtained with a traditional capillary rheometer. Meanwhile, the percentage reduction in the viscosity value and the ratio of slip velocity relative to mean velocity all increase with decreasing micro-channel size. In the present study we emphasize that the rheological behavior of the high crystallinity HDPE and low crystallinity LDPE resins in microscopic scale are all different from that of macroscopic scale but HDPE displays a less significant lower. The reason can be attributed to for LDPE resin within the micro-channel can create the higher extra bonding force between the bulk chains than HDPE resin. Thus, it will have the lower adhesive force between the bulk chains with the micro-channel wall, resulting in higher degree of wall slip.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In