Full Content is available to subscribers

Subscribe/Learn More  >

Microchannel Optimization for Heat Dissipation From a Solid Substrate

[+] Author Affiliations
C. B. Sobhan, P. S. Anoop, Kuriyan Arimboor, Thomas Abraham

National Institute of Technology, Calicut, India

G. P. Peterson

University of Colorado at Boulder, Boulder, CO

Paper No. MNHT2008-52117, pp. 671-677; 7 pages
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME


A computational model was developed to analyze and optimize the convective heat transfer for water flowing through rectangular microchannels fabricated in a silicon substrate. A baseline case was analyzed by solving the nondimensional governing equations. Using a quasi three-dimensional computational model, the velocity and temperature distributions were obtained and the numerical results were then used to determine the overall dimensionless thermal resistance for the convective heat transfer from the substrate to the fluid. To validate the numerical model, the average Nusselt numbers as determined by the numerical model were compared with experimental results available in the literature, for channels with comparable hydraulic diameters. The procedure for arriving at an optimum geometric configuration and arrangement of microchannels on the substrate, subject to given design constraints, so that the thermal resistance is at a minimum, is described and demonstrated using the computational model.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In