0

Full Content is available to subscribers

Subscribe/Learn More  >

Nano Fluids and Critical Heat Flux

[+] Author Affiliations
Mihajlo Golubovic, H. D. Madhawa Hettiarachchi, William M. Worek

University of Illinois at Chicago, Chicago, IL

Paper No. MNHT2008-52360, pp. 623-632; 10 pages
doi:10.1115/MNHT2008-52360
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

In recent years nanofluids have been attracting significant attention in the heat transfer research community. These fluids are obtained by suspending nanoparticles having sizes between 1 and 100 nm in regular fluids. It was found by several researchers that the thermal conductivity of these fluids can be significantly increased when compared to the same fluids without nanoparticles. Also, it was found that pool boiling critical heat flux increases in nanofluids. In this paper, our objective is to evaluate the impact of different nanoparticle characteristics including particle concentration, size and type on critical heat flux experimentally at saturated conditions. As result, this work will document our experimental findings about pool boiling critical heat flux in different nanofluids. In addition, we will identify reasons behind the increase in the critical heat flux and present possible approaches for analytical modeling of critical heat flux in nanofluids at saturated conditions.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In