0

Full Content is available to subscribers

Subscribe/Learn More  >

Natural Convective Heat Transfer of Water-in-FC72 Nanoemulsion Fluids

[+] Author Affiliations
Zenghu Han, Bao Yang

University of Maryland, College Park, MD

Paper No. MNHT2008-52351, pp. 611-614; 4 pages
doi:10.1115/MNHT2008-52351
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

The use of SOLID-particles has long been a common way of increasing fluid thermal conductivity. In this paper, nanoemulsion fluids—dispersions of LIQUID-nanodroplets—are proposed. As an example, water-in-FC72 nanoemulsion fluids are developed, and their thermophysical properties and impact on natural convective heat transfer are investigated experimentally. A significant increase in thermal conductivity—up to 52% for 12vol% of water nanodroplets (or 7.1 wt%)—is observed in the fluids. The enhancement in conductivity and viscosity of the fluids is found to be nonlinear with water loading, indicating an important role of the hydrodynamic interaction and aggregation of nanodroplets. However, the relative viscosity is found to be about two times the relative conductivity if compared at the same water loading. The presence of water nanodroplets is found to systematically increase the natural convective heat transfer coefficient in these fluids, in contrast to the observation in several conventional nanofluids containing solid nanoparticles.

Copyright © 2008 by ASME
Topics: Fluids , Convection , Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In