0

Full Content is available to subscribers

Subscribe/Learn More  >

Combining Instantaneous Temperature Measurements and CFD for Analysis of Fuel Impingement on the DISI Engine Piston Top

[+] Author Affiliations
Kukwon Cho, Ronald O. Grover, Jr., Dennis Assanis, Zoran Filipi

University of Michigan, Ann Arbor, MI

Gerald Szekely, Paul Najt, Rod Rask

General Motors R&D, Warren, MI

Paper No. ICES2009-76117, pp. 325-336; 12 pages
doi:10.1115/ICES2009-76117
From:
  • ASME 2009 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2009 Internal Combustion Engine Division Spring Technical Conference
  • Milwaukee, Wisconsin, USA, May 3–6, 2009
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4340-6 | eISBN: 978-0-7918-3843-3
  • Copyright © 2009 by ASME

abstract

A two-pronged experimental and computational study was conducted to explore the formation, transport, and vaporization of a wall film located on the piston surface within a four-valve, pent roof, direct-injection spark-ignition (DISI) engine, with the fuel injector located between the two intake valves. Negative temperature swings were observed at three piston locations during early injection, thus confirming the ability of fast-response thermocouples to capture the effects of impingement and heat loss associated with fuel film evaporation. Computational Fluid Dynamic (CFD) simulation results demonstrated that the fuel film evaporation process is extremely fast under conditions present during intake. Hence, the heat loss measured on the surface can be directly tied to the heating of the fuel film and its complete evaporation, with the wetted area estimated based on CFD predictions. This finding is critical for estimating the local fuel film thickness from measured heat loss. The simulated fuel film thickness and transport corroborated well temporally and spatially with measurements at thermocouple locations directly in the path of the spray, thus validating the spray and impingement models. Under the strategies tested, up to 23% of fuel injected impinges upon the piston and creates a fuel film with thickness of up to 1.2 μm. In summary, the study demonstrates the usefulness of heat flux measurements to quantitatively characterize the fuel film on the piston top and allows for validation of the CFD code.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In