Full Content is available to subscribers

Subscribe/Learn More  >

Mechanisms of Convective Heat Transfer of Nanofluids

[+] Author Affiliations
Dongsheng Wen

University of London, London, UK

Paper No. MNHT2008-52304, pp. 591-598; 8 pages
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME


Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was identified about a decade ago. Much evidence shows that the enhancement of convective heat transfer is much higher than that of thermal conductivity only. The mechanism of such enhancement, however, is still unclear. This work reviews the mechanisms of convective heat transfer of nanofluids in a single channel, and identifies two most likely mechanisms: the modification of effective properties and the migration of nanoparticles under flow conditions. A numerical simulation based on a combined Euler and Lagrange method is investigated in this work to illustrate the feature of nanoparticle migration and the drawback of the effective property approach. The motion of discrete nanoparticles is determined by the Lagrangian trajectory method based on the Newton’s second law that includes influence of the body force, various hydrodynamic forces, and the Brownian and thermophoresis forces. The coupling of discrete particles with continuous flow is realized through the modification of the source term of the continuous equation. It concludes that the two-phase flow nature of nanofluids, especially the nanoparticle migration and the resultant non-uniform particle and effective property profile, needs to be considered to properly model the convective heat transfer.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In