0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Temperature Dependence of Interfacial Tension and Viscosity of Nanofluid

[+] Author Affiliations
S. M. Sohel Murshed, Nam-Trung Nguyen

Nanyang Technological University, Singapore

Paper No. MNHT2008-52171, pp. 545-548; 4 pages
doi:10.1115/MNHT2008-52171
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

Investigations on temperature dependence of surface tension, interfacial tension and viscosity a nanofluid are reported in this paper. Experimental results show that nanofluid having TiO2 nanoparticles (15 nm) in deionized water exhibit substantially smaller surface tension and oil-based interfacial tension than those of the base fluid (i.e. deionized water). These surface and interfacial tensions of this nanofluid were found to decrease almost linearly with increasing temperature. The Brownian motion of nanoparticles in base fluid was identified as a possible mechanism for reduced surface and interfacial tensions of nanofluid. The measured effective viscosity of nanofluid was found to be insignificantly higher than that of base fluid and it also decreases with increasing fluid temperature.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In