Full Content is available to subscribers

Subscribe/Learn More  >

Low NOx and Low Smoke Operation of a Diesel Engine Using Gasoline-Like Fuels

[+] Author Affiliations
Gautam Kalghatgi

Shell Global Solutions UK, Chester, UK

Leif Hildingsson

Lund University, Lund, Sweden; Shell Global Solutions UK, Chester, UK

Bengt Johansson

Lund University, Lund, Sweden

Paper No. ICES2009-76034, pp. 259-271; 13 pages
  • ASME 2009 Internal Combustion Engine Division Spring Technical Conference
  • ASME 2009 Internal Combustion Engine Division Spring Technical Conference
  • Milwaukee, Wisconsin, USA, May 3–6, 2009
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4340-6 | eISBN: 978-0-7918-3843-3
  • Copyright © 2009 by ASME


Much of the technology in advanced diesel engines, such as high injection pressures, is aimed at overcoming the short ignition delay of conventional diesel fuels to promote premixed combustion in order to reduce NOx and smoke. Previous work in a 2 litre single cylinder diesel engine with a compression ratio of 14 has demonstrated that gasoline fuel, because of its high ignition delay, is very beneficial for premixed compression ignition compared to a conventional diesel fuel. We have now done similar studies in a smaller — 0.537 litre — single cylinder diesel engine with a compression ratio of 15.8. The engine was run on three fuels of very different auto-ignition quality — a typical European diesel fuel with a cetane number (CN) of 56, a typical European gasoline of 95 RON and 85 MON with an estimated CN of 16 and another gasoline of 84 RON and 78 MON (estimated CN of 21). The previous results with gasoline were obtained only at 1200 rpm — here we compare the fuels also at 2000 rpm and 3000 rpm. At 1200 rpm, at low loads (∼4 bar IMEP) when smoke is negligible, NOx levels below 0.4 g/kWh can be easily attained with gasoline without using EGR while this is not possible with the 56 CN European diesel. At these loads, the maximum pressure rise rate is also significantly lower for gasoline. At 2000 rpm, with 2 bar absolute intake pressure, NOx can be reduced below 0.4 g/kWh with negligible smoke (FSN <0.1) with gasoline between 10 and 12 bar IMEP using sufficient EGR while this is not possible with the diesel fuel. At 3000 rpm, with the intake pressure at 2.4 bar absolute, NOx of 0.4 g/KWh with negligible smoke was attainable with gasoline at 13 bar IMEP. Hydrocarbon and CO emissions are higher for gasoline and will require after-treatment. High peak heat release rates can be alleviated using multiple injections. Large amounts of gasoline, unlike diesel, can be injected very early in the cycle without causing heat release during the compression stroke and this enables the heat release profile to be shaped.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In