0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Molecular Orientation on the Ability of Water to Enter a Carbon Nanotube at Different Temperatures

[+] Author Affiliations
James Cannon, Natalie Moore, Ortwin Hess

University of Surrey, Guildford, UK

Paper No. MNHT2008-52378, pp. 503-507; 5 pages
doi:10.1115/MNHT2008-52378
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

Temperature plays a significant role in determining the dynamics of flow on the nanoscale. This is particularly important with carbon nanotubes, which are likely to form an integral part of future nanofluidic and biological devices. We demonstrate through first-principles density-functional theory (DFT) that the orientation of the individual water molecules plays a significant role in determining the temperatures and energies at which water is able to enter the nanotube. This has a number of implications for the flow of water through the nanotube at different temperatures and densities, particularly when considering low-density water vapour.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In