0

Full Content is available to subscribers

Subscribe/Learn More  >

Sessile Drop Evaporation on Surfaces of Various Wettability

[+] Author Affiliations
Hyunsoo Song, Ho-Young Kim, Jung Yul Yoo

Seoul National University, Seoul, South Korea

Yongku Lee

University of Calgary, Calgary, Alberta, Canada

Songwan Jin

University of California at San Francisco, San Francisco, CA

Paper No. MNHT2008-52096, pp. 445-451; 7 pages
doi:10.1115/MNHT2008-52096
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

This work experimentally investigates the evaporation rates of water drops on surfaces of various wettability. By measuring the temporal evolutions of the drop radius and contact angle, we find the qualitative difference between the evaporation behavior on hydrophilic surfaces where the contact radius remains constant initially and that on the superhydrophobic surfaces where the contact angle remains constant. Also, the evaporation rate is observed to depend on the surface material although the currently available models assume that the rate is solely determined by the drop geometry. Although the theory to explain this dependence on the surface remains to be pursued by the future work, we give the empirical relations that can be used to predict the drop volume evolution for each surface.

Copyright © 2008 by ASME
Topics: Drops , Evaporation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In