0

Full Content is available to subscribers

Subscribe/Learn More  >

A Molecular Dynamics Study on Energy Accommodation Coefficients in Microchannels

[+] Author Affiliations
Jun Sun, Zhixin Li

Tsinghua University, Beijing, China

Paper No. MNHT2008-52053, pp. 333-337; 5 pages
doi:10.1115/MNHT2008-52053
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

Energy accommodation coefficient (EAC), used in thermal boundary condition in micro gas flow and heat transfer, is reported to be always less than unity and greatly influenced by the wall characters. According to EAC’s definition, the statistical algorithm was described and EAC for argon gas was studied by two dimensional NEMD simulations with heat conduction between two smooth platinum plates at different temperatures. With one wall’s temperature fixed, the non-equilibrium EACs were calculated by changing the other wall’s temperature. Meanwhile, the equilibrium EAC at one temperature can be extrapolated from a series of non-equilibrium EACs as the temperature difference approaches to zero. The effects of wall temperature, wall temperature difference, and Kn on EAC were investigated. Non-equilibrium EAC increases with wall temperature difference decreased, and becomes larger with increased Kn. And equilibrium EAC is larger for lower temperature and larger Kn.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In