Full Content is available to subscribers

Subscribe/Learn More  >

Thermal and Electrical Conductivities of Polycrystalline Metallic Nanofilms Based on the Kinetic Theory

[+] Author Affiliations
Bo Feng, Zhixin Li, Xing Zhang

Tsinghua University, Beijing, China

Paper No. MNHT2008-52009, pp. 303-311; 9 pages
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME


A model is developed for in-plane thermal conductivity of nanostructured metallic films based on the kinetic theory, which attributes the reduced thermal conductivity to the reduced mean free path of electrons. The partially inelastic electron-surface scattering and grain-boundary impedance by quantum mechanical treatment are elaborately included. Meanwhile, the mean free path of electrons is also used to study in-plane electrical conductivity of nanofilms. Both electrical conductivity and thermal conductivity, varying with film thickness and temperature, are observed to be lower than corresponding bulk values, agreeing well with the experimental data. The grain-boundary scattering is theoretically found to dominate over surface scattering to enhance the size effect on electrical and thermal conductivities. In addition, the size effect in low temperature appears more dramatic due to larger electron Knudsen number. We further examine the Lorenz number of nanofilms and find the Wiedemann-Franz law is seriously violated. The Coulomb blockade and the neutral excitation of electron-hole pair are used to offer a more detailed picture. Excessive thermal conductivity is also evaluated resorting to concepts in granular metals to show the validity of this account.

Copyright © 2008 by ASME
Topics: Kinetic theory



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In