Full Content is available to subscribers

Subscribe/Learn More  >

Space-Time-Structure Map for As Cast Massive Rolls

[+] Author Affiliations
Waldemar S. Wołczyński, Wojciech Wajda

Institute of Metallurgy and Materials Science, Kraków, Poland

Bogusz Kania

AGH - University of Science and Technology, Kraków, Poland

Mirosław Kostrzewa

ECO-Harpoon - Ecological Technologies Company Ltd., Warszawa, Poland

Paper No. AJTEC2011-44021, pp. T10018-T10018-9; 9 pages
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • Honolulu, Hawaii, USA, March 13–17, 2011
  • ISBN: 978-0-7918-3892-1 | eISBN: 978-0-7918-3894-5
  • Copyright © 2011 by ASME


A thermal gradients’ field was studied for an as cast massive roll. Three ranges within the thermal gradients field were differentiated. The thermal gradient is constant along with the second range of thermal gradients’ field. Thus, columnar into equiaxed structure transition (CET) is to be expected within the second range. This statement is in good qualitative agreement with a similar observation given by Hunt’s theory. The columnar structure formation was significantly slowed down within the second range of thermal gradients field. At beginning of the second range the liquidus isotherm tears away from columnar structure / liquid interface. The columnar structure is still formed within the time adequate to the second range of thermal gradients but its growth vanishes due to lost competition, and at the end of the second range the equiaxed structure growth dominates, exclusively. In fact, the extrapolation of the velocity of the columnar structure / liquid interface to its value equal with zero confirms the appropriate location of the end of the second range within which the CET is observed. The detailed analysis of the solidus isotherm / liquidus isotherm movements allows a development of the Space-Time-Structure Map for a solidifying massive roll. The Map shows the location of the CET in time (solidification time) and in space (along the roll radius). Moreover a proper locations of structural zones are drawn in the Map. The simulation of the thermal gradients’ field is a very useful tool in the industrial practice. The results of simulation can be used to predict the Space-Time-Structure Map (STSM) for a given massive roll or a massive ingot. Additionally, the equation for solute redistribution after back-diffusion was formulated on the basis of the new theory for microsegregation. It allows formulating the so-called macrosegregation index dealing with the whole ingot/roll volume.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In