0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Properties of Tank Car Steels Retired From the Fleet

[+] Author Affiliations
Peter C. McKeighan

Exponent – Failure Analysis Associates, Wood Dale, IL

David Y. Jeong

Volpe National Transportation Systems Center, Cambridge, MA

Joseph W. Cardinal

Southwest Research Institute, San Antonio, TX

Paper No. JRC2009-63060, pp. 235-244; 10 pages
doi:10.1115/JRC2009-63060
From:
  • 2009 Joint Rail Conference
  • 2009 Joint Rail Conference
  • Pueblo, Colorado, USA, March 4–5, 2009
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-4338-3 | eISBN: 978-0-7918-3842-6
  • Copyright © 2009 by ASME

abstract

As a consequence of recent accidents involving the release of hazardous materials (hazmat), the structural integrity and crashworthiness of railroad tank cars have come under scrutiny. Particular attention has been given to the older portion of the fleet that was built prior to steel normalization requirements instituted in 1989. This paper describes a laboratory testing program to examine the mechanical properties of steel samples obtained from tank cars that were retired from the fleet. The test program consisted of two parts: (1) material characterization comprised of chemical, tensile and Charpy V-notch (CVN) impact energy and (2) high-rate fracture toughness testing. In total, steel samples from 34 tank cars were received and tested. These 34 tank cars yielded 61 different pre-1989 TC128-B conditions (40 shell and 21 head samples), three tank cars yielded seven different post-1989 TC128-B conditions (four shell and three head samples), and six tank cars yielded other material (A212, A515, and A285 steel) conditions (six shell and five head samples). The vast majority of the TC128-B samples extracted from retired tank cars met current TC128-B material specifications. Elemental composition requirements were satisfied in 97 percent of the population whereas the required tensile properties were satisfied in 82 percent of the population. Interpretation of the high-rate fracture toughness tests required dividing the pre-1989 fleet into quartiles that depended on year of manufacture or age, and testing three tank cars per quartile. Considering the high-rate fracture toughness results at 0°F for the pre-1989 fleet, 100 percent of the oldest two quartiles, 58 percent of the second youngest quartile, and 83 percent of the youngest quartile exhibited adequate or better fracture toughness (defined as toughness greater than 50 ksi√in). High-rate fracture toughness at –50°F was adequate for 83 percent of two quartiles (the youngest and second oldest), but the other two quartiles exhibited lower toughness with only 33 (2nd youngest) to 50 percent (oldest) exhibiting adequate properties.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In