0

Full Content is available to subscribers

Subscribe/Learn More  >

Geometry Effect on the Electrokinetic Instability of the Electroosmotic Flow in Microfluidic Channels

[+] Author Affiliations
Yee Cheong Lam, Gongyue Tang, Deguang Yan

Nanyang Technological University, Singapore

Paper No. MNHT2008-52070, pp. 119-123; 5 pages
doi:10.1115/MNHT2008-52070
From:
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME

abstract

To study the effect of geometry on electroosmotic flow in micro channels, we fabricated PDMS-glass microchannels of different designs, which have patterned channels with abrupt contraction of different sizes. Using fluorescent imaging technology, we demonstrated the effect of geometry on the instability of DC driven electroosmotic flow in microfluidic channels. For certain geometry and conductivity of the electrolyte solution (Sodium Bicarbonate), there is a threshold voltage for electroosmotic instability, exhibiting itself as “ripple”. Generally, the factors which affect the threshold voltage include channel width, channel geometry, and electrolyte conductivity. Narrower channel resulted in higher onset voltage. As conductivity of the electrolyte increases, the threshold voltage tends to increase. Early transition to unstable electroosmotic flow in microfluidic channels was observed under relatively low Re.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In