Full Content is available to subscribers

Subscribe/Learn More  >

Hydrodynamic Flows in Electrowetting

[+] Author Affiliations
Sung Hee Ko, Horim Lee, Kwan Hyoung Kang

Pohang University of Science and Technology, Pohang, South Korea

Paper No. MNHT2008-52059, pp. 109-112; 4 pages
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME


In this work, we found experimentally that there exist fairly strong fluid flows in AC electrowetting, which can be utilized as a means to mix the fluids in EWOD-based micro-devices. We visualized the internal flow. There may exist two distinct flow-generation mechanisms; one is the droplet oscillation, and the other is the electrohydrodynamic flow. The flow pattern is significantly dependent on the applied AC frequency. At low frequencies (represented here by 1 kHz), the center of the vortices is located somewhat randomly and the flow directs upward near the symmetric axis. At high frequencies (represented by 128 kHz), however, a pair of vortices having quite a regular structure is clearly visible and the flow directs downward near the symmetric axis. The flow patterns are strongly dependent on the position of the point electrode. The droplet surface undergoes a periodic oscillation (visualized by a high-speed camera) with a frequency exactly twice the frequency of applied electrical signal. The oscillating interface can generate a steady streaming. However the numerical results show that there exists no electric field at low AC frequencies. On the contrary, there exists quite a strong electric field inside the droplet at high frequencies. It means the electrohydrodynamic flow cannot be generated at the low frequency region, and the droplet oscillation might cause the flow generation at low frequencies. We also demonstrated the flow can be beneficially utilized as a mixing method.

Copyright © 2008 by ASME
Topics: Flow (Dynamics)



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In