0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Three-Dimensional Electric Field and Heat Conduction to Electrodes on the Temperature Rise During Irreversible Electroporation

[+] Author Affiliations
Seiji Nomura, Kosaku Kurata, Hiroshi Takamatsu

Kyushu University, Fukuoka, Japan

Paper No. AJTEC2011-44214, pp. T10002-T10002-8; 8 pages
doi:10.1115/AJTEC2011-44214
From:
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • ASME/JSME 2011 8th Thermal Engineering Joint Conference
  • Honolulu, Hawaii, USA, March 13–17, 2011
  • ISBN: 978-0-7918-3892-1 | eISBN: 978-0-7918-3894-5
  • Copyright © 2011 by ASME

abstract

The irreversible electroporation (IRE) is a novel method to ablate abnormal cells by applying a high voltage between two electrodes that are stuck into abnormal tissues. One of the advantages of the IRE is that the extracellular matrix (ECM) may be kept intact, which is favorable for healing. For a successful IRE, it is therefore important to avoid thermal damage of ECM resulted from the Joule heating within the tissue. A three-dimensional (3-D) analysis was conducted in this study to predict temperature rise during the IRE. The equation of electric field and the heat conduction equation were solved numerically by a finite element method. It was clarified that the highest temperature rise occurred at the base of electrodes adjacent to the insulated surface. The result was significantly different from a two-dimensional (2-D) analysis due to end effects, suggesting that the 3-D analysis is required to determine the optimal condition.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In