Full Content is available to subscribers

Subscribe/Learn More  >

Inertance Effects to Diffuser Micropumps Flow Rate Spectrum

[+] Author Affiliations
Ngoc-Bich Le, Mau-Sheng Lin, Yi-Chu Hsu

Southern Taiwan University, Tainan, Taiwan

Ling-Sheng Jang

National Cheng Kung University, Tainan, Taiwan

Paper No. MNHT2008-52047, pp. 87-96; 10 pages
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME


This study presents a diffuser micropump and characterizes its output flow rates, like the parabola shape on the frequency domain and the effecting factors. First, equivalent circuit using fluid-electric analogy was built up; then, the flow rate analysis results were compared to experiment results to verify the applicability of the circuit simulation. The operation frequency was 800 Hz for both cases and the maximum flow rates were 0.078 and 0.075 μl/s for simulation and experiment result, respectively. The maximum flow rate difference was 3.7%. The circuit then was used to analyze the inertial effects of transferred fluid as well as system components to the output flow rates. This work also explains why the flow rate spectrum has the shape of parabola. The analysis results showed that without inertial effects, the micropump flow rates are linearly proportional to the operation frequency; otherwise it has parabola shape. The natural frequency of the actuator-membrane structure was recognized using finite element method to verify if this parameter affects the characteristics of the flow rates. The experiment and simulation results demonstrated 800 Hz and 91.4 kHz for the frequency of the maximum pumping flow rate and the first mode natural frequency of actuator-membrane structure, respectively. It indicates that the structure natural frequencies of the actuator-membrane structure do not play any role to operate the micropumps.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In