Full Content is available to subscribers

Subscribe/Learn More  >

Estimation of Rail Bending Stress From Real-Time Vertical Track Deflection Measurement

[+] Author Affiliations
Curt Greisen, Sheng Lu, Haoliang Duan, Shane Farritor, Richard Arnold

University of Nebraska - Lincoln, Lincoln, NE

Bill GeMeiner, Dwight Clark, Tom Toth, Kevin Hicks

Union Pacific Railroad, Omaha, NE

Ted Sussmann

Volpe National Transporation Systems Center, Cambridge, MA

Mahmood Fateh, Gary Carr

Federal Railroad Administration, Washington, DC

Paper No. JRC2009-63050, pp. 175-182; 8 pages
  • 2009 Joint Rail Conference
  • 2009 Joint Rail Conference
  • Pueblo, Colorado, USA, March 4–5, 2009
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-4338-3 | eISBN: 978-0-7918-3842-6
  • Copyright © 2009 by ASME


High traffic volume, heavy axle loads, and high train speed can produce large rail bending stresses which contribute to increased track deterioration. Rail stress problems are further exacerbated by poor support conditions such as abrupt changes in vertical track modulus and poor track geometry. This paper summarizes the development of a measurement technique, based on a system being developed over the past few years at the University of Nebraska and sponsored by the Federal Railroad Administration, to determine the actual bending stress in the rail in real-time from a car moving at revenue speeds. The UNL system measures the rail height relative to the line created by the wheel/rail contact points. The system functions continuously over long distances and in revenue service. The system establishes three points of the rail shape beneath the loaded wheels and over a distance of ten feet. These points include the location of high bending stress below the loaded wheels. This direct measurement of the rail shape can then be mapped into rail stress through the curvature of the rail and beam theory. As verification of the UNL measurement system, results from tests conducted on the Union Pacific Railroad’s Yoder Subdivision are discussed. In these tests, bondable resistance strain gages were mounted to the lower flange of the rail at several locations. The track was then loaded by spotting the measurement car over the strain gages and by moving the car over the gages at various speeds. The loaded and unloaded rail profiles were measured using surveying equipment and the relationship between the UNL deflection measurement and the measured rail stress was explored. These early results suggest the UNL system is capable of measuring real-time bending stress in the rail.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In