0

Full Content is available to subscribers

Subscribe/Learn More  >

A Nonlinear Rail Vehicle Dynamics Computer Program SAMS/Rail: Part 3—Applications to Predict Railroad Vehicle-Track Interaction Performance

[+] Author Affiliations
Khaled E. Zaazaa, Timothy P. Martin, Brian Whitten

ENSCO, Inc., Springfield, VA

Brian Marquis, Erik Curtis

Volpe National Transportation Systems Center, Cambridge, MA

Magdy El-Sibaie, Ali Tajaddini

Federal Railroad Administration, Washington, DC

Paper No. JRC2009-63046, pp. 165-173; 9 pages
doi:10.1115/JRC2009-63046
From:
  • 2009 Joint Rail Conference
  • 2009 Joint Rail Conference
  • Pueblo, Colorado, USA, March 4–5, 2009
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-4338-3 | eISBN: 978-0-7918-3842-6
  • Copyright © 2009 by ASME

abstract

The dynamic response of a railroad vehicle traveling at speed over track deviations can be predicted by using multibody simulation codes. In this case, the solution of nonlinear equations of motion and extensive calculations based on the suspension characteristics of the vehicle are required. Recently, the Federal Railroad Administration, Office of Research and Development has sponsored a project to develop a general multibody simulation code that uses an online nonlinear three-dimensional wheel-rail contact element to simulate contact forces between wheel and rail. In this paper, several applications to examine such issues as critical speed, curving performance at varying cant deficiencies, and wheel load equalization are presented to demonstrate the use of the multibody code. In addition, the application of the multibody code can be extended to train a neural network system. Neural network technology has the ability to learn relationships between a mechanical system input and output, and, once learned, give quick outputs for given input. The neural network can be combined with the use of a nonlinear multibody code to predict the performance of multiple railroad vehicle types in real time. In this paper, this system is briefly presented to shed light on the optimum use of the multibody code to prevent derailment.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In