Full Content is available to subscribers

Subscribe/Learn More  >

Atomic Scale Three-Dimensional Phononic Crystals With Very Low Thermal Conductivities

[+] Author Affiliations
Jean-Numa Gillet, Sebastian Volz, Yann Chalopin

École Centrale Paris, Châtenay-Malabry, France

Paper No. MNHT2008-52111, pp. 15-23; 9 pages
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer
  • ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
  • Tainan, Taiwan, June 6–9, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4292-4 | eISBN: 0-7918-3813-7
  • Copyright © 2008 by ASME


Superlattices have been used to design thermoelectric materials with ultra-low thermal conductivities. Indeed, the thermoelectric figure of merit ZT varies as the inverse of the material thermal conductivity. However, the design of a thermoelectric material with ZT superior to the alloy limit usually fails with the superlattices because of two major drawbacks: First, a lattice mismatch can occur between the different layers of a superlattice as in a Si/Ge superlattice. This leads to the formation of defects and dislocations, which reduces the electrical conductivity and therefore avoids the increase of ZT compared to the alloy limit. On the other hand, the superlattices only affect heat transfer in one direction. To cancel heat conduction in the three spatial directions, we propose atomic-scale three-dimensional (3D) phononic crystals. Because the lattice constant of our phononic crystal is of the order of some nanometers, we obtain phonon confinement in the THz range and a nanomaterial with a very low thermal conductivity. This is not possible with the usual phononic crystals, which show band gaps in the sub-MHz range owing to their large lattice constant of the order of 1 mm. A period of our atomic-scale 3D phononic crystal is composed of a given number of diamond-like silicon cells forming a supercell. A periodic Si/Ge heterostructure is obtained since we substitute at each supercell center the Si atoms in a smaller number of cells by Ge atoms. The Ge atoms in the cells located at each supercell center form a box-like nanoparticle with a size that can be varied to obtain different atomic configurations of our nanomaterial. We also propose another design for our phononic crystal where we introduce a small number of diamond-like silicon cells at the center of a periodic supercell of diamond-like germanium cells. In this second design, we form box-like nanoparticles of Si atoms in a germanium matrix instead of boxlike nanoparticles of Ge atoms in a silicon matrix in the first design. With the dispersion curves computed by lattice dynamics and a general equation, we obtain the thermal conductivities of several atomic configurations of our phononic crystal. Compared to a bulk material, the thermal conductivity can be reduced by at least one order of magnitude in our phononic crystal. This reduction is only due to the phonon group velocities, and we expect a further decrease owing to the diminution of the phonon mean free path in our phononic crystal.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In