0

Full Content is available to subscribers

Subscribe/Learn More  >

Oxidation Kinetics of Nano Crystalline Tin Oxide Conductive Thin Films

[+] Author Affiliations
Mehmet Oguz Guler, Mirac Alaf, Deniz Gultekin, Hatem Akbulut, Ahmet Alp

Sakarya University, Sakarya, Turkey

Paper No. MN2008-47072, pp. 153-156; 4 pages
doi:10.1115/MN2008-47072
From:
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials
  • Sharm El Sheikh, Egypt, January 11–13, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4291-6 | eISBN: 1-7918-3814-5
  • Copyright © 2008 by ASME

abstract

Tin oxide was the first transparent conductor to have achieved significant commercialization. SnO2 is an n-type semiconductor with an optical band gap of about 3.6 eV in poly crystalline form. One of the main reasons for the wide use is its rather desirable characteristic of having both, high optical transmittance and high electrical conductivity. Under optimum deposition conditions, tin oxide crystallizes in the tetragonal (rutile) structure. In this study, nano crystalline thin oxide conductive thin films has been manufactured by thermal evaporation techniques onto steel substrates using metallic tin targets and oxidation kinetics have been studied after D.C. plasma oxidation by using XRD (X-Ray Diffraction). The activation energy of SnO and SnO2 from Sn phase transformations has also been studied.

Copyright © 2008 by ASME
Topics: Thin films , oxidation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In