Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Pressure on the Microstructural Behavior on SnO2 Thin Films Deposited by RF Sputtering

[+] Author Affiliations
Mehmet Oguz Guler, Mirac Alaf, Deniz Gultekin, Hatem Akbulut, Ahmet Alp

Sakarya University, Sakarya, Turkey

Paper No. MN2008-47071, pp. 147-151; 5 pages
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials
  • Sharm El Sheikh, Egypt, January 11–13, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4291-6 | eISBN: 1-7918-3814-5
  • Copyright © 2008 by ASME


Tin oxide has multiple technological applications including Li-ion batteries, gas sensors, optoelectronic devices, transparent conductors and solar cells. In this study tin dioxide (SnO2 ) thin films were deposited on glass substrates by RF sputtering process in the oxygen (O2 ) and argon (Ar) plasma medium. The deposition of the thin SnO2 films was carried out by RF sputtering from SnO2 targets. Before deposition the system was evacuated to 10−4 torr vacuum level and backfilled with Ar. The deposition of the nano structured thin SnO2 films have been performed at different gas pressures. The deposition of the SnO2 was both carried out at different pure argon gas pressures and argon/oxygen mediums with varying oxygen partial pressures. The effect of argon and argon/oxygen partial gas pressures on the grain structure and film thickness were analyzed in the resultant thin films. The deposited thin films both on glass and stainless steel substrates were characterized with scanning electron microscopy (SEM), X-ray diffractometry equipped with multi purpose attachment. The grain size of the deposited layer was determined by X-ray analysis. The Atomic Force Microscopy (AFM) technique was also conducted on the some selected coatings to reveal grain structure and growth behaviors.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In