Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Nano- and Micro-Filled Resin Composites Used as Dental Restorative Materials

[+] Author Affiliations
Dalia Abdel Hamid

The American University in Cairo; Cairo University, Cairo, Egypt

Amal Esawi

The American University in Cairo, Cairo, Egypt

Inas Sami, Randa Elsalawy

Cairo University, Cairo, Egypt

Paper No. MN2008-47053, pp. 101-110; 10 pages
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials
  • Sharm El Sheikh, Egypt, January 11–13, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4291-6 | eISBN: 1-7918-3814-5
  • Copyright © 2008 by ASME


Adhesively-bonded resin composites have the advantage of conserving sound tooth structure with the potential for tooth reinforcement, while at the same time providing an aesthetically acceptable restoration. However, no composite material has been able to meet both the functional needs of posterior restorations and the superior aesthetics required for anterior restoration. In an attempt to develop a dental resin composite that had the mechanical strength of hybrid composite materials and the superior polish and gloss retention associated with microfilled materials, nanofilled resin composites have been introduced in the market. Although nanofillers are the most popular fillers utilized in current visible light-activated dental resin composites and are claimed to be the solution for the most challenging material limitations as a universal restorative material, the mechanisms by which these fillers influence the resin composite properties are not well explained. In this study, some physical and mechanical properties of a nanofilled resin composite containing 60 vol. % zirconia and silica fillers were evaluated and compared to those of a microhybrid resin composite of the same composition. The nanofilled resin composite was found to have equivalent polymerization shrinkage and depth of cure to the microhybrid material but a slightly lower degree of conversion and density. Regarding mechanical behaviour, although the nanocomposite was found to exhibit significantly higher wear resistance, and equivalent flexural strength, its indentation modulus and nanohardness were slightly lower. Field-emission scanning electron microscopy (FE-SEM) analysis was conducted in order to evaluate the microstructure and to obtain a better understanding of the effect of the nanofillers on the behaviour of the nanocomposite.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In