Full Content is available to subscribers

Subscribe/Learn More  >

Some Aspects on Thermal Degradation of Organo-Layer Silicates

[+] Author Affiliations
Mervat S. Hassan

Central Metallurgical R&D Institute, Cairo, Egypt

Hassan El-Shall, Chearly Beaty

University of Florida, Gainesville, FL

Paper No. MN2008-47038, pp. 67-74; 8 pages
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials
  • Sharm El Sheikh, Egypt, January 11–13, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4291-6 | eISBN: 1-7918-3814-5
  • Copyright © 2008 by ASME


Naturally occurring silicates, like montmorillonite (MMT) have received much attention as reinforcement materials for polymers because of their potentially high aspect ratio and unique intercalation (exfoliation) characteristic. Montmorillonite is of particular interest because it has a layered structure typically about 1nm in thickness and a high aspect ratio ranging from 100 to 1500 that, with proper exfoliation, can lead to platelets with high stiffness and strength dispersed in the polymer matrix. In this paper, we studied the delamination of Egyptian bentonite and Cloisite Na+ (USA) using different onium ions. The organo-clays were characterized by X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), Derivativethermogravimetry (TGA), Thermogravimetry (TG), and Infrared spectroscopy (IR). Understanding the relationship between molecular structure of the modifying surfactant and the thermal stability of the organically modified layered silicates is critical to its processing and subsequent applications. Therefore, special emphasis is given to the study of the thermal degradation of the modified clays. The results of the thermal degradation of montmorillonite (MMT) and alkyl quaternary ammonium montmorillonite (OMMT) are discussed in this paper.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In