0

Full Content is available to subscribers

Subscribe/Learn More  >

Nanostructured Ti-Fe Thin Layered Photocatalyst via Sol-Gel Technique

[+] Author Affiliations
Ahmed K. Aboul-Gheit, Sawsan A. Mahmoud, Yasser M. Moustafa

Egyptian Petroleum Research Institute, Cairo, Egypt

Paper No. MN2008-47033, pp. 47-58; 12 pages
doi:10.1115/MN2008-47033
From:
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference
  • ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials
  • Sharm El Sheikh, Egypt, January 11–13, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4291-6 | eISBN: 1-7918-3814-5
  • Copyright © 2008 by ASME

abstract

The finding of of Zhu et al. [1] that iron-ion-doped TiO2 powders by hydrothermal hydrolysis and crystallization exhibited that the amount of doped iron ion significantly affected the phoyocatalytic degradation activity of XRG yellow dye and Fe optimum content could enhance photocatalytic activity under UV and visible light irradiation has encourage us to carry out this work. Hence, we prepared and examined the photocatalytic activities of a series of TiO2/Fe2O3 mixtures of thin layers of TiO2 and Fe2O3 using the sol-gel method and found that the TiO2(5)/Fe2O3(1) catalyst the most active for anthracene photodegradation. This catalyst acquired the highest surface area, proper pore size distribution and the smaller nano-particle size.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In