Full Content is available to subscribers

Subscribe/Learn More  >

Considerations for Grout Formulations for Facility Closures Using In Situ Strategies

[+] Author Affiliations
Michael J. Serrato, Christine A. Langton, John B. Gladden

Savannah River National Laboratory; Savannah River Nuclear Solutions, Aiken, SC

John T. Long, John K. Blankenship

Savannah River Nuclear Solutions, Aiken, SC

Andrew P. Szilagyi

U.S. Department of Energy, Germantown, MD

George R. Hannah, Rita B. Stubblefield

U.S. Department of Energy, Aiken, SC

Paper No. ICEM2010-40273, pp. 455-461; 7 pages
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 1
  • Tsukuba, Japan, October 3–7, 2010
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-5452-5 | eISBN: 978-0-7918-3888-4
  • Copyright © 2010 by ASME


The U.S. Department of Energy (DOE) is conducting in situ closures (entombment) at a large number of facilities throughout the complex. Among the largest closure actions currently underway are the closures of the P and R Reactors at the Savannah River Site (SRS), near Aiken, South Carolina. In these facilities, subgrade open spaces are being stabilized with grout; this ensures the long term structural integrity of the facilities and permanently immobilizes and isolates residual contamination. The large size and structural complexity of these facilities present a wide variety of challenges for the identification and selection of appropriate fill materials. Considerations for grout formulations must account for flowability, long term stability, set times, heat generation and interactions with materials within the structure. The large size and configuration of the facility necessitates that grout must be pumped from the exterior to the spaces to be filled, which requires that the material must retain a high degree of flowability to move through piping without clogging while achieving the required leveling properties at the pour site. Set times and curing properties must be controlled to meet operations schedules, while not generating sufficient heat to compromise the properties of the fill material. The properties of residual materials can result in additional requirements for grout formulations. If significant quantities of aluminum are present in the facility, common formulations of highly alkaline grouts may not be appropriate because of the potential for hydrogen generation with the resultant risks. SRS is developing specialized inorganic grout formulations that are designed to address this issue. One circum-neutral chemical grout formulation identified for initial consideration did not possess the proper chemical characteristics, having exceptionally short set times and high heat of hydration. Research efforts are directed toward developing grout formulations that can meet operational requirements for chemical compatibility, extended set times and reduced heat generation.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In