0

Full Content is available to subscribers

Subscribe/Learn More  >

Uranium Refining and Conversion Plant Decommissioning Project

[+] Author Affiliations
Naoki Zaima, Yasuyuki Morimoto, Noritake Sugitsue, Kazumi Kado

Japan Atomic Energy Agency, Kagamino, Okayama, Japan

Paper No. ICEM2010-40068, pp. 311-320; 10 pages
doi:10.1115/ICEM2010-40068
From:
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 1
  • Tsukuba, Japan, October 3–7, 2010
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-5452-5 | eISBN: 978-0-7918-3888-4
  • Copyright © 2010 by ASME

abstract

The uranium refining and conversion plant (URCP) at Ningyo-toge was constructed in 1981 for the purpose of demonstrating on refining and conversion process from yellow cake (or uranium trioxide) to uranium hexafluoride by way of uranium tetrafluoride. For 20 years, 385 tons of natural uranium hexafluoride and 336 tons of reprocessed uranium hexafluoride (approximately) was produced. There are two different type of refining processes in the URCP. One is the wet process by convertig the natural uranium and the other is the dry conversion process for the reprocessed uranium. The dismantling of the dry process facilities began in March, 2008. It was found the large amount of uranium residuals such as wet slurry and powder uranium inside the vessels and pipes. Therefore, we have to take care of the spread of the contamination during dismantling works. The basic strategy concerning plant dismantling were the optimization of the total labor costs and the minimization of the radioactive wastes generated. The dismantling procedure is shown below; i) measuring doserate by using high sensitivity surveymeters, and nuclide identification by using gamma ray spectrometry, ii) estimating uranium mass inventory, iii) planning work force distributions with radiological survey staffs, iv) deciding dismantling methods concretely, v) decontaminating schematically if required, vi) collecting detailed data of working conditions, vi) measuring and classifying contaminated materials, vii) managements of radioactive waste drum and non-contaminated equipment, viii) control for personal exposures. Almost all equipment will be decontaminated except building decontamination it by around 2013FY. In addition, the secondary wastes were also yielded. Few thousands man-days were necessary for this project. The measurement data have not showed the high environmental radiation doserate, generally less than 0.3μSv/h. However, by the trace of the reprocessed uranium, the trans-uranium nuclides such as uranium-232 progenies, Th-228 and Tl-208 were observed. The accumulation of the nuclides which emit high energy gamma rays such as Tl-208 caused radiation exposure. As for the waste disposal, the determination of uranium content must be necessary. We have been now developing the uranium measuring systems with better accuracy. The further tasks imposed by our experiences are summarized the followings; i) minimization and reduction of radioactive wastes, ii) decontamination for the buildings and utilities, iii) wastes disposal. We have to work hard toward the final decommissioning.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In