0

Full Content is available to subscribers

Subscribe/Learn More  >

Improvement of Radioactivity Inventory Evaluation Procedure in Preparatory Tasks for Decommissioning

[+] Author Affiliations
Ken-ichi Tanaka, Hideaki Ichige

Japan Atomic Power Company, Tokyo, Japan

Hidenori Tanabe

Japan Nuclear Fuel Limited, Rokkasho, Aomori, Japan

Paper No. ICEM2010-40045, pp. 303-310; 8 pages
doi:10.1115/ICEM2010-40045
From:
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 1
  • Tsukuba, Japan, October 3–7, 2010
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-5452-5 | eISBN: 978-0-7918-3888-4
  • Copyright © 2010 by ASME

abstract

Preparatory tasks for decommissioning of nuclear power plant start with radiological characterization. Residual radioactivity inventory evaluation is a main part of the characterization. Reliable information on the inventory is important for specification for decommissioning plan. Japan Atomic Power Company (JAPC) has already started these tasks for Tsuruga Nuclear Power Plant Unit 1 (TS-1). We can optimize decommissioning plan using the information. To obtain the reliable information, we improved an evaluation procedure. The procedure is divided into two main steps. First step is neutron flux distribution calculation and second one is radioactivity distribution calculation. Radioactivity distribution is calculated using neutron flux distribution. In this work, we improved the evaluation procedure to obtain the reliable information on the inventory. Because of the limitation of computer resource, two-dimension (2D) approximation model was applied to radioactivity distribution around Reactor Pressure Vessel (RPV). We can calculate reliable 2D neutron flux distribution by having better understanding of neutron transport phenomena. Neutron flux was measured at 30 locations in TS-1 Primary Containment Vessel (PCV) using activation foils. And in order to understand the neutron transport phenomenon inside the PCV, we also calculated neutron flux distribution with the three-dimensional (3D) discrete ordinates method calculation (Sn) code. By consideration about the result of the measurement and 3D calculation, we could understand the characteristics of the neutron flux distribution inside the PCV. To simulate the neutron flux distribution well with 2D Sn code, neutron flux behaviors inside the PCV had been investigated with referencing the measurement values and with observing calculated 3D neutron flux distribution. 2D calculation model had been modified repeatedly until reliable calculation result was provided. After several model modifications, the reliable 2D calculation was accomplished and important neutron transport phenomena that are necessary to simulate the neutron flux distribution well was understood. Network-parallel-computing technique was applied to radioactivity distribution calculation. Using this technique, we could calculate radioactivity at all space mesh points that were used with 2D Sn code and we obtained the radioactivity distribution. By using this distribution, we can estimate a quantity of radioactivity around RPV more accurately and optimize dismantling designs.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In