0

Full Content is available to subscribers

Subscribe/Learn More  >

Impermeable Graphite: A New Development for Embedding Radioactive Waste

[+] Author Affiliations
Johannes Fachinger, Karl-Heinz Grosse

Furnaces Nuclear Applications Grenoble, Hanau, Germany

Richard Seemann

ALD, Hanau, Germany

Milan Hrovat

Hanau, Germany

Paper No. ICEM2010-40163, pp. 163-169; 7 pages
doi:10.1115/ICEM2010-40163
From:
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 1
  • Tsukuba, Japan, October 3–7, 2010
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-5452-5 | eISBN: 978-0-7918-3888-4
  • Copyright © 2010 by ASME

abstract

The natural occurrence of graphite proves its geological stability over long time periods and therefore it could be considered as a matrix for embedding radioactive waste. However its porous structure affects the possible use of graphite as long term stable waste matrix for final disposal. Aqueous phases can penetrate the pore system and radionuclides adsorbed on the surface can be leached. Furthermore slow corrosion in aquatic phases can be induced by high irradiation dose rates in the range of 10−5 to 10−7 gm−2 d−1 . Therefore radiation induced corrosion process cannot be neglected in geological time scales. These problems can be solved with a graphite material with a closed pore system. A graphite composite material with an inorganic binder has been developed with a density > 99.7% of theoretical density and a negligible porosity. An initial calculation predicts that the life time of the graphite will be at least 2 orders of magnitude higher than porous graphite. This material represents a long term stable leaching resistant matrix applicable for the embedding of irradiated graphite (i-graphite). Natural graphite can be added to improve the compaction behavior and mechanical properties. Additional applications could be the embedding of other radioactive wastes in this matrix.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In