Full Content is available to subscribers

Subscribe/Learn More  >

Study of LPOP Residue on Resin Mineralization and Solidification

[+] Author Affiliations
Gen-ichi Katagiri, Morio Fujisawa

Fuji Electric Systems Co., Ltd., Kawasaki, Kanagawa, Japan

Kazuya Sano, Norikazu Higashiura

Japan Atomic Energy Agency, Tsuruga, Fukui, Japan

Paper No. ICEM2010-40112, pp. 125-130; 6 pages
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management
  • ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management, Volume 1
  • Tsukuba, Japan, October 3–7, 2010
  • Conference Sponsors: Nuclear Engineering Division and Environmental Engineering Division
  • ISBN: 978-0-7918-5452-5 | eISBN: 978-0-7918-3888-4
  • Copyright © 2010 by ASME


Fuji Electric had developed the low pressure oxygen plasma technology for mild decomposition and mineralization of an organic material such as ion exchange resin. This method is suitable for radioactive spent resin volume/weight reduction and stabilization for final disposal. On this process, the ion-exchange resins are vaporized and decomposed into gas-phase with pyrolysis, and then, they are decomposed and oxidized with low-pressure plasma activity based on oxygen. And this process is achieved under moderate condition for radio active waste. • incinerate temperature: 400–700 deg C; • low-pressure (low-temperature) plasma condition: 10–50 Pa. From the result of this process, named of LPOP(low pressure oxidation process) by the inductively coupled plasma, we have confirmed that the process is applicable for organic fireproof waste including ion-exchange resin, and found that the used resin treatment performance is the same as cold test (using imitate spent resin) [1] [2] [3]. In this paper, the outline of the LPOP technology, and two research results on the possibility of solidification with cement of LPOP residue for geological disposes are reported. (1)Study of the residue chemical form after LPOP process (2)Study of the solidification character with cement.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In