Full Content is available to subscribers

Subscribe/Learn More  >

Flow Conditions at the Inlet of Aspirating Pipes: Part 2—Experiments

[+] Author Affiliations
Vincent Debut, Jose Antunes

Instituto Tecnologico e Nuclear (ITN/ADL), Sacavem, Portugal

François Axisa

ITN/ADL, Paris, France

Paper No. FEDSM-ICNMM2010-30075, pp. 861-873; 13 pages
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5451-8 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME


Following the theoretical work and experimental strategy devised by Axisa [1] in the companion paper, a test rig was designed and built in order to validate the analytical analysis of Part 1. Two configurations of partly immersed articulated pipes were tested, both for normal (discharging) and for reversed (aspirating) flows. The water-loop enabled velocities up to 3 m/s in both normal and reversed flows. The experimental results presented pertain to the following pipe configurations: (a) one articulated pipe, with either a common protruding or a rounded baffled free end; and (b) two articulated pipes with equal lengths. For all flow velocities modal identifications were performed from the measured system responses. The results obtained under normal discharging flow are in good agreement with the theoretical model originally developed by Benjamin [2], which is also reviewed in Part 1. For the single articulated pipe, the Coriolis force term leads to a steady increase of damping with flow velocity, modal frequency being significantly affected only near critical damping, as expected. For pipes with two articulations, both the Coriolis and centrifugal flow terms are significant, leading to large changes in both modal frequencies and damping, which agree with the predictions from the classical model. The most interesting results from our experiments obviously are concerned with aspirating flows. Following the discussion of Part 1, it was found that the one-pipe configuration is nearly insensitive to aspirating flows, irrespectively of the pipe termination geometry, showing that the Coriolis force term is canceled exactly by the term arising from the change in momentum of the flow entering the pipe at the free end. The experimental results from the two-pipe configuration are sensitive to the aspirating flow velocity. Among the various inflow models explored in Part 1, the one which assumes an inflow velocity directed along the tube axis, but without the tangential component of the pipe motion, proved to capture many of the features displayed by the experimental results. Actually, as the aspirating velocity increases, both identified modal frequencies of the two-pipe system, as well as the modal damping of the first mode, closely follow the theoretical predictions from this basic inflow model. However, a discrepancy was observed, concerning the modal damping trend of the second mode, which decreases slowly but steadily in our tests as the velocity increases, while the basic inlet flow model predicts a nearly constant damping value. Nevertheless, such subtle but significant behavior of system damping can be related to small variations of the basic parameters which describe the inlet flow field.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In