0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Geometry on the Non-Linear Vibrations of Cylindrical Shells With Internal Flowing Fluid

[+] Author Affiliations
Zenon J. del Prado

Federal University of Goias, Goiânia, GO, Brazil

Paulo B. Gonçalves

Pontifícia Universidade Católica-Rio, Rio de Janeiro, RJ, Brazil

Michael P. Païdoussis

McGill University, Montreal, QC, Canada

Paper No. FEDSM-ICNMM2010-30034, pp. 839-848; 10 pages
doi:10.1115/FEDSM-ICNMM2010-30034
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5451-8 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME

abstract

In this work, the influence of the characteristic geometric parameters of a cylindrical shell, such as radius-to-thickness and radius-to-length ratios, on both the linear and non-linear vibrations of a fluid-filled cylindrical shell with internal flowing fluid is studied. The Donnell non-linear shallow shell equations are used to study a simply supported cylindrical shell subjected to both lateral and axial time-dependent loads with internal flowing fluid. The fluid is assumed to be inviscid and incompressible and the flow isentropic and irrotational. An expansion with eight degrees of freedom, containing the fundamental, companion, gyroscopic and five axisymmetric modes is used to describe the lateral displacement of the shell. The Galerkin method is used to obtain the nonlinear equations of motion which are, in turn, solved by the Runge-Kutta method. First, the parametric linear equations are used to study the influence of geometry and physical properties on the natural frequencies, critical flow and critical circumferential wavenumber. Secondly, numerical methods are used to describe the influence of geometric characteristics on the non-linear frequency-amplitude relations of the shell. The results obtained show the influence of the geometric parameters on the vibration characteristics of the shell and can be used as a basic tool for design of cylindrical shells in a dynamic environment.

Copyright © 2010 by ASME
Topics: Fluids , Pipes , Vibration , Geometry

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In