Full Content is available to subscribers

Subscribe/Learn More  >

Study on Modeling Method of Vortex Shedding Synchronization in Heat Exchanger Tube Bundles

[+] Author Affiliations
Eiichi Nishida

Shonan Institute of Technology, Fujisawa, Kanagawa, Japan

Hiromitsu Hamakawa, Azim Arshad

Ohita University, Ohita, Ohita, Japan

Paper No. FEDSM-ICNMM2010-30917, pp. 821-827; 7 pages
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5451-8 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME


Acoustic resonance may occur in heat exchangers such as gas heaters or boilers which contain tube bundles. The purpose of this study is to develop modeling method of vortex shedding synchronization because this is the most essential part of critical flow velocity prediction. Here, acoustic resonance level dependence of spatial correlation of vortex shedding is expressed by coherence function between wake-oscillator behaviors in any two locations in the cavity. The feedback effect in synchronization of vortex shedding is represented by resonant level dependence of the wake-oscillator phase fluctuation range. This method gives the result that when resonance level increases, synchronization level in the tube bundles also increases, which seems to be a reasonable conclusion. Experimental method to identify the undefined parameters in the proposed method is also mentioned.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In