0

Full Content is available to subscribers

Subscribe/Learn More  >

Fluidelastic Instability in Normal and Parallel Triangular Arrays of Finned Tubes

[+] Author Affiliations
J. Wang, D. S. Weaver

McMaster University, Hamilton, ON, Canada

Paper No. FEDSM-ICNMM2010-30223, pp. 477-484; 8 pages
doi:10.1115/FEDSM-ICNMM2010-30223
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5451-8 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME

abstract

An experimental study was carried out to investigate fluidelastic instability in finned tube bundles in normal and parallel triangular arrays. Three arrays of each geometry type were studied experimentally: two arrays with serrated, helically wound finned tubes of different fin densities, and a bare tube array with the same base diameter as the finned tubes. All six tube arrays studied had the same tube pitch. The finned tubes under consideration were commercial finned tubes typically used in the fossil and process industries. For the purpose of the present investigation, the concept of “effective diameter” of a finned tube, as previously used to predict vortex shedding, was used to compare the finned tube results with other finned tube results as well as the existing bare tube world data. The experimental results for the triangular arrays show that the fin’s structure strongly influences the fluidelastic stability of finned tube bundles and the fin pitch is demonstrated to reduce the difference in the stability threshold between the tube array geometries as the fin density increases. Overall, the effect of serrated fins on fluidelastic instability is very complex and array geometry dependent, stabilizing some arrays and destabilizing others. Clearly, the effect of fins cannot be accounted for by the simple use of an effective diameter of an equivalent bare tube.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In