Full Content is available to subscribers

Subscribe/Learn More  >

Vibro-Impact Experiments and Computations of a Gap-Supported Tube Subjected to Single-Phase Fluid-Elastic Coupling Forces

[+] Author Affiliations
Philippe Piteau, Xavier Delaune, Laurent Borsoi

Commissariat à l’Energie Atomique, Gif-sur-Yvette, France

Jose Antunes

Instituto Tecnologico e Nuclear, Sacavem, Portugal

Paper No. FEDSM-ICNMM2010-30071, pp. 395-407; 13 pages
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5451-8 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME


In this paper we address the problem of computing the nonlinear vibro-impact responses of gap-supported heat-exchanger tubes subjected to fluid-elastic coupling forces, as well as to the turbulence excitation from transverse flows. Emphasis is on the fluid-elastic modeling within a time-domain nonlinear framework, as well as on the stabilizing effect of impacts on the fluid-elastic coupling forces. Theoretical computations of the linear and vibro-impacting regimes of a flow-excited cantilever test tube, within a rigid 3×5 square bundle, are based on the experimentally identified fluid-elastic coupling force coefficients and turbulence spectrum. Computations are then compared with the experimental vibratory responses, enabling a full validation of the modeling approach. Furthermore, interesting conclusions are drawn, concerning: (a) the energy balance between sources and sinks, for a vibro-impacting tube subjected to fluid-elastic forces; (b) the dependence of the vibration response frequency on impacts at the loose supports, and their effect on the nonlinear re-stabilization of fluid-elastically unstable tubes. Details on the following aspects are reported in the paper: (1) Numerical modeling of the fluid-elastic coupling forces for time-domain computations; (2) Experimental identification of the fluid-elastic coupling coefficients; (3) Computations and experiments of both linear and vibro-impacting responses under the combined action of turbulence and fluid-elastic coupling; and (4) Energy aspects of the vibro-impacting fluid-elastically coupled tube responses.

Copyright © 2010 by ASME
Topics: Force , Fluids , Computation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In