Full Content is available to subscribers

Subscribe/Learn More  >

Fluid-Structure Interaction Simulation by Smoothed Particle Hydrodynamics

[+] Author Affiliations
Mostafa Safdari Shadloo, Amir Zainali, Mehmet Yildiz

Sabancı University, İstanbul, Turkey

Paper No. FEDSM-ICNMM2010-31137, pp. 325-330; 6 pages
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5451-8 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME


In this article, a modified SPH algorithm is proposed to solve Fluid-Structure Interaction (FSI) problems including fluid flow in interaction with compatible structures under a large deformation. To validate the current algorithm against available data in literature, we consider two important benchmark cases; namely, an oscillating elastic beam and dam breaking problems. The proposed algorithm is based on the elimination of the intermediate data transfer steps between the fluid and the solid structures, whereby resulting in an easy and time-saving simulation method. With the test application studied, we were able to prove the ability of the modified SPH method for solving of fluid and solid domains monolithically without the need to define an interfacial boundary condition or any additional steps to simulate the deformation of an elastic dam. Numerical results suggest that upon choosing correct SPH parameters such as smoothing function, and lengths, as well as coefficients for artificial viscosity and artificial stress, one can obtain results in satisfactorily agreement with numerical findings of earlier works.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In