0

Full Content is available to subscribers

Subscribe/Learn More  >

Large-Amplitude Oscillations of a Finite-Thickness Cantilevered Flexible Plate in Viscous Channel Flow

[+] Author Affiliations
Novak S. J. Elliott, Anthony D. Lucey

Curtin University of Technology, Perth, WA, Australia

Matthias Heil

University of Manchester, Manchester, UK

Paper No. FEDSM-ICNMM2010-30438, pp. 287-295; 9 pages
doi:10.1115/FEDSM-ICNMM2010-30438
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5451-8 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME

abstract

The broad aim of the present work is to elucidate mechanisms of obstructive breathing disorders (snoring, sleep apnea) in which flow-induced instabilities of the soft palate feature. We use the well-established analogue system model wherein a two-dimensional flexible plate (soft palate) is mounted downstream of a rigid surface that separates upper and lower plane channel (oral and nasal tracts) flows that interact with the plate motion and then combine into a single plane channel (pharynx) flow. For this system, we take the next step towards biomechanical realism by modeling finite-amplitude motions of the flexible plate and incorporating finite thickness in its structure. The structural model makes use of a geometrically nonlinear formulation of the solid mechanics. Viscous flow is modeled at Reynolds numbers giving unsteady laminar flow. The fully-coupled fluid-structure interaction (FSI) model is developed using the open-source finite-element library oomph–lib . We first show the effects of finite amplitude and finite thickness on the in-vacuo modes of the plate through a validation study of the structural mechanics. Thereafter, we use the FSI model to illustrate both stable and unstable motions of the plate. Overall, this paper demonstrates the versatility of the new modeling approach and its suitability for characterizing the dependence of the plate’s stability on the system parameters.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In