0

Full Content is available to subscribers

Subscribe/Learn More  >

The Low Reynolds Number Limit of Vortex and Wake-Induced Vibrations

[+] Author Affiliations
Stéphane Étienne, Dominique Pelletier

École Polytechnique de Montréal, Montréal, QC, Canada

Paper No. FEDSM-ICNMM2010-30387, pp. 95-101; 7 pages
doi:10.1115/FEDSM-ICNMM2010-30387
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 7th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, and Flow-Induced Vibration and Noise: Volume 3, Parts A and B
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5451-8 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME

abstract

Vortex and wake induced vibrations (VIV/WIV) of a circular cylinder at low values of the Reynolds number (Re) are simulated by means of a fully coupled fluid-structure interaction numerical model based on the finite element method. It is shown that VIV/WIV could occur far below the first Hopf bifurcation (Re <47). The main objective of this study is to determine the limiting Reynolds-Reduced velocity (Ur) curve that separates the non-vibrational area from the possible vibrations occurrence area. We assume that by taking a zero mass cylinder and zero structural damping we will obtain the low limit of vibrations in terms of Re and Ur. It is shown in particular that transverse vibrations could occur for reduced velocities larger than 40 and not below 3.5.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In