0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation on Flow and Mixing in Rotating Microfluidics

[+] Author Affiliations
Wallace Woon-Fong Leung, Yong Ren

Hong Kong Polytechnic University, Hong Kong, China

Paper No. FEDSM-ICNMM2010-31059, pp. 1313-1317; 5 pages
doi:10.1115/FEDSM-ICNMM2010-31059
From:
  • ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting
  • ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels: Parts A and B
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5450-1 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME

abstract

Mixing in rotational micro-chamber has been carried out both experimentally and numerically with intent of improving mixing in viscous dominated microfluidics. In experiment, an enclosed chamber made of machined PMMA cut-out with a PDMS cover was set-up on the rotational platform. Different geometries of the chamber (on the order of several mm) with constant height yet different angular span 5, 10, 15, 20 deg. and radial extents 1.5 and 3 mm were used in the tests. While the two different dyes each occupying half of the chamber took a long time (e.g. nearly 40 minutes for a 20-degree span chamber with inner and outer radii, respectively, 35 and 36.5 mm and height 0.5 mm) for mixing by molecular diffusion in the chamber, faster mixing (about 2.5 minute) can be achieved under continuous acceleration and deceleration rotation with a linear rate of 25 rad/s2 . The time for mixing per unit volume (Specific Mixing Time - SMT) was determined experimentally as a function of geometry. The SMT increases with increasing vorticity strength as a result of increasing size of the rotating chamber and/or increasing the magnitude of the linear acceleration and deceleration rates. Mixing is also studied by numerical simulation of the tested geometry. Comparing with the experiments, we found good agreement for the SMT between test results and numerical model for small-angled chamber while the numerical model seems to under-estimate the SMT for large-angled chamber. Further, we have also verified qualitatively in the experiment the flow pattern of the primary vortex in the radial-azimuthal plane responsible, to a large extent, for mixing in the chamber. Two approaches have been taken to observe and confirm the primary vortex being set up by continuous acceleration-and-deceleration of the chamber. The first approach adopted color tracing with two miscible dyed liquids, and the second approach used neutrally buoyant particles to trace fluid particle flow in the rotating chamber.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In