0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Characterization of the Unsteady Flow Over the Rear Slant of an Ahmed Body

[+] Author Affiliations
Adrien Thacker, Sandrine Aubrun, Annie Leroy, Philippe Devinant

Université d’Orléans, Orléans, France

Paper No. FEDSM-ICNMM2010-30633, pp. 2649-2657; 9 pages
doi:10.1115/FEDSM-ICNMM2010-30633
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4948-4 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME

abstract

This study presents results of an experimental analysis of the unsteady features of the flow around the rear part of an Ahmed body with a rear slant angle of 25°. This analysis focuses on the half elliptic separation bubble that developps on the rear slanted surface and brings new information, improving the understanding of the flow unsteadiness. Flow investigations are carried out using hot wire probe measurements for velocity fluctuations in the plane of symmetry above the rear slanted surface and five unsteady flush mounted pressure taps (Kulite transducers) simultaneously acquiring static pressure fluctuations along the middle line of the slanted surface. Spectral analysis and Proper Orthogonal Decomposition of the output signal show the emergence of a low frequency unsteadiness and high frequency activities which, in accordance with bibliography about separated and reattaching flow configurations, is related to a global flapping of the separated shear layer and a large scale vortices shedding. Characteristic frequencies of both instabilities is given and physical effects of the low frequency unsteadiness is related with the flapping motion of the separated shear layer.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In