0

Full Content is available to subscribers

Subscribe/Learn More  >

Viscosity Studies of Aqueous Solutions of Hafnium Oxide Particles and Polystyrene Nanospheres

[+] Author Affiliations
Katie Lieg Pitts

University of Ottawa, Ottawa, ON, Canada

Timothy Shedd

University of Wisconsin - Madison, Madison, WI

Paper No. FEDSM-ICNMM2010-30826, pp. 1443-1451; 9 pages
doi:10.1115/FEDSM-ICNMM2010-30826
From:
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4948-4 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME

abstract

Nanoparticle colloidal system rheology has long been researched, without many concrete conclusions. Literature has been devoted to the viscosity and shear properties of these systems since Einstein’s PhD thesis. However, most models are based on molecular dynamics which are not necessarily applicable to real systems, and most real systems are modeled by empiricism. This report looks to unify these approaches through rheological testing and mathematical analysis in order to achieve several goals using a system composed of hafnium oxide particles suspended in water. The first goal is to have a viscosity model that fits not only empirical data, but also the relevant theory and first principles. By employing the modern techniques of a rhoemeter-on-a-chip to nano-scale particles, the limitations of traditional rheometry are bypassed. The molecular dynamics approaches are converted to zero-shear and infinite-shear viscosities which can be applied to traditional models. A modern model was then derived, applied to new data, and agreement was found to a satisfactory degree. No significant change in viscosity with shear rate was found experimentally or analytically. Traditional research is done with spherical particles, such as polystyrene nanopsheres, as which we are approximating hafnium oxide (HfOx) to be. Polystyrene nanospheres are nominally spherical and commercially available at relatively inexpensive costs. Actual spherical data was required for appropriate comparison, and the findings show that the spherical particles have distinct properties.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In