Full Content is available to subscribers

Subscribe/Learn More  >

Heat Flux to Fluids Within a Rock Fracture in a Geothermal System

[+] Author Affiliations
Dustin Crandall

URS/Washington Division; National Energy Technology Lab, Morgantown, WV

Goodarz Ahmadi

Clarkson University, Potsdam, NY

Grant Bromhal

National Energy Technology Lab, Morgantown, WV

Paper No. FEDSM-ICNMM2010-30213, pp. 899-904; 6 pages
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
  • ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C
  • Montreal, Quebec, Canada, August 1–5, 2010
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4948-4 | eISBN: 978-0-7918-3880-8
  • Copyright © 2010 by ASME


Fractures in rocks enable the motion of fluids through the large, hot geologic formations of geothermal reservoirs. The heat transfer from the surrounding rock mass to the fluid flowing through a fracture depends on the geometry of the fracture, the fluid/solid properties, and the flow rate through the fracture. A numerical study was conducted to evaluate the changes in heat transfer to the fluid flowing through a rock fracture with changes in the flow rate. The aperture distribution of the rock fracture, originally created within Berea sandstone and imaged using a CT-scanner, is well described by a Gaussian distribution and has a mean aperture of approximately 0.6 mm. Water was used as the working fluid, enabling an evaluation of the efficiency of heat flux to the fluid along the flow path of a hot dry geothermal system. As the flow through the fracture was increased to a Reynolds number greater than 2300 the effect of channeling through large aperture regions within the fracture were observed to become increasingly important. For the fastest flows modeled the heat flux to the working fluids was reduced due to a shorter residence time of the fluid in the fracture. Understanding what conditions can maximize the amount of energy obtained from fractures within a hot dry geologic field can improve the operation and long-term viability of enhanced geothermal systems.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In