0

Full Content is available to subscribers

Subscribe/Learn More  >

Development and Use of a Segregated-Solver for Detailed Modeling of End-Gas Detonation in a Lean-Burn Spark-Ignited Engine

[+] Author Affiliations
Scott B. Fiveland, Shriram Vijayaraghavan

Caterpillar Inc., Mossville, IL

Shaoping Shi

Fluent Inc., Pittsburgh, PA

Steven W. Richardson, Michael H. McMillian

National Energy Technology Laboratory, Morgantown, WV

Joel D. Hiltner

Hiltner Combustion Systems, Ferndale, WA

Paper No. ICEF2010-35109, pp. 999-1007; 9 pages
doi:10.1115/ICEF2010-35109
From:
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • San Antonio, Texas, USA, September 12–15, 2010
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4944-6 | eISBN: 978-0-7918-3882-2
  • Copyright © 2010 by ASME

abstract

End-gas detonation occurs in a spark-ignited engine when the advancing flame front compresses the end-gas mixture to its autoignition temperature. The rapid energy release results in shock waves which are undesirable due to resulting combustion noise and boundary layer breakdown leading to reduced engine performance and incipient engine damage. In a spark-ignited engine, end-gas knock can result from improper combinations of compression ratio, spark timing or inlet thermodynamic conditions (i.e. manifold temperature, pressure, and equivalence ratio). These variables exhibit very complex interactions, which require costly high dimensional experimental designs for proper evaluation. As a result, detailed modeling tools are needed to predict the onset of the end-gas detonation regime for engine design applications. Developing a solver to predict the end-gas detonation of gases ahead of the flame front in an operating engine is not trivial. In theory, the model would need to simultaneously resolve both the detailed fluid mechanics as well as describe the fuel decomposition using detailed chemistry. Calculations for this type can take weeks or months depending on the number of dimensions that are resolved. Since hundreds of computations may be necessary to optimize a given configuration, it is necessary to be able to not only compute the onset of auto-ignition and other parameters accurately, but efficiently. The objective of this work was to develop an efficient methodology that could be utilized to effectively predict detonation in an internal combustion spark-ignited engine. This paper presents the computational methodology, a review of the combustion tool capability, and a comparison to experiments. The work clearly demonstrates the existence of inhomogeneities in the temperature field and discusses their impact on the prediction of end-gas knock.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In