Full Content is available to subscribers

Subscribe/Learn More  >

Review of Waste Heat Recovery Mechanisms for Internal Combustion Engines

[+] Author Affiliations
John R. Armstead, Scott A. Miers

Michigan Technological University, Houghton, MI

Paper No. ICEF2010-35142, pp. 965-974; 10 pages
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • San Antonio, Texas, USA, September 12–15, 2010
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4944-6 | eISBN: 978-0-7918-3882-2
  • Copyright © 2010 by ASME


The demand for more fuel efficient vehicles has been growing steadily and will only continue to increase given the volatility in the commodities market for petroleum resources. The internal combustion engine utilizes approximately one third of the chemical energy released during combustion. The remaining two-thirds are rejected from the engine via the cooling and exhaust systems. Significant improvements in fuel conversion efficiency are possible through the capture and conversion of these waste energy streams. Promising waste heat recovery techniques include turbocharging, turbo compounding, Rankine engine compounding, and thermoelectric generators. These techniques have shown increases in engine thermal efficiencies that range from 2% to 20%, depending on system design, quality of energy recovery, component efficiency, and implementation. The purpose of this paper is to provide a broad review of the advancements in the waste heat recovery methods; thermoelectric generators and Rankine cycles for electricity generation, which have occurred over the past 10 years as these two techniques have been at the forefront of current research for their untapped potential. The various mechanisms and techniques, including thermodynamic analysis, employed in the design of a waste heat recovery system are discussed.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In