Full Content is available to subscribers

Subscribe/Learn More  >

A New Valve Lift Control Technique in Electrohydraulic Variable Valve Actuation Systems

[+] Author Affiliations
Mohammad Pournazeri, Amir Khajepour, Amir Fazeli

University of Waterloo, Waterloo, ON, Canada

Paper No. ICEF2010-35050, pp. 733-740; 8 pages
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • San Antonio, Texas, USA, September 12–15, 2010
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4944-6 | eISBN: 978-0-7918-3882-2
  • Copyright © 2010 by ASME


Besides valve timings and opening duration control, several benefits could be achieved in engine operation if the valve actuation system could control the maximum valve displacement during a particular engine condition. Typically, in most electro-hydraulic variable valve actuation systems (VVA), the maximum valve lift along with valve opening/closing events are adjusted simultaneously by precise control of the spool travel in servo-valves. However, at high engine speeds, concurrent control of timings and peak valve lift becomes difficult and sometimes even impossible due to servo-valve response time limitations. In this paper, a new lift control technique is proposed using a control-valve located in the hydraulic supply line. Using this technique, it is possible to precisely control the valve lift even at high engine speeds. With this mechanism, the control-valve flow area could be adjusted using a low-speed actuator such as an electric motor. In contrast to conventional approaches, where maximum lift is repeatedly controlled within each cycle, valve lift in this technique can be adjusted after few engine cycles, thereby reducing control signal fluctuations and also eliminating the need for ultra-high-speed actuators. The proposed hydraulic VVA system is mathematically modeled, and a non-linear sliding mode controller is designed based on the derived equations. Finally, the performance of the proposed lift control technique is verified under different operating conditions.

Copyright © 2010 by ASME
Topics: Valves



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In