0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Spark Discharge PM Sensor for Measurement of Engine-Out Soot Emissions

[+] Author Affiliations
David P. Gardiner, Greg R. Pucher, William D. Allan, Marc LaViolette

Royal Military College of Canada, Kingston, ON, Canada

Paper No. ICEF2010-35141, pp. 687-695; 9 pages
doi:10.1115/ICEF2010-35141
From:
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • San Antonio, Texas, USA, September 12–15, 2010
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4944-6 | eISBN: 978-0-7918-3882-2
  • Copyright © 2010 by ASME

abstract

Filter paper methods are well recognized as an effective means of measuring soot emissions from diesel engines. However, these methods provide an average soot value over a relatively long time period, rather than a real-time signal. Real-time measurements of engine-out soot emissions that could track changes in soot levels during transient operating conditions would be useful for the optimization of engine control strategies such as exhaust gas recirculation. This paper presents experimental results obtained using a real-time PM sensor based upon a spark discharge measuring principle. Like traditional filter paper devices, it is sensitive to the carbon or soot component of the particulate matter emitted by diesel engines. The sensor was tested on a turbocharged diesel engine, and compared with reference measurements of Filter Smoke Number (FSN) from an AVL 415s smokemeter. Improvements to the sensor made it possible to measure soot levels at FSN values over 3.5, while retaining good sensitivity below FSN values of 0.1. The sensor signal showed a high correlation with the reference FSN measurements. This correlation was used to develop a signal processing technique so the sensor provided a real-time signal for predicted FSN. Conversion of the FSN values to mass concentration values (using published techniques for the reference instrument) indicated that the output of the spark discharge soot sensor was nearly linear with mass concentration over a substantial portion of the measuring range. The sensor showed a response time of under 2 seconds to step changes in FSN levels.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In