0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Filter Smoke Number and Elemental Carbon Mass From Partially Premixed Low Temperature Combustion in a Direct Injection Diesel Engine

[+] Author Affiliations
William F. Northrop, Stanislav V. Bohac, Dennis N. Assanis, Jo-Yu Chin

University of Michigan, Ann Arbor, MI

Paper No. ICEF2010-35117, pp. 415-422; 8 pages
doi:10.1115/ICEF2010-35117
From:
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • San Antonio, Texas, USA, September 12–15, 2010
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4944-6 | eISBN: 978-0-7918-3882-2
  • Copyright © 2010 by ASME

abstract

Partially premixed low temperature combustion (LTC) is an established advanced engine strategy that enables the simultaneous reduction of soot and NOX emissions in diesel engines. Measuring extremely low levels of soot emissions achievable with LTC modes using a filter smoke meter requires large sample volumes and repeated measurements to achieve the desired data precision and accuracy. Even taking such measures, doubt exists as to whether filter smoke number (FSN) accurately represents the actual smoke emissions emitted from such low soot conditions. The use of alternative fuels such as biodiesel also compounds efforts to accurately report soot emissions since the reflectivity of high levels of organic matter found on the particulate matter collected may result in erroneous readings from the optical detector. Using FSN, it is desired to report mass emissions of soot using empirical correlations derived for use with petroleum diesel fuels and conventional modes of combustion. The work presented in this paper compares the experimental results of well known formulae for calculating mass of soot using FSN and elemental carbon mass using thermal optical analysis (TOA) over a range of operating conditions and fuels from a four cylinder direct injection passenger car diesel engine. The data show that the mass of soot emitted by the engine can be accurately predicted with the smoke meter method utilizing a 3000 ml sample volume over a range of FSN from 0.02 to 1.5. Soot mass exhaust concentration calculated from FSN using the best of the literature expressions and that from the TOA taken over all conditions correlated linearly with a slope of 0.99 and R2 value of 0.94. A primary implication of the work is that the level of confidence in reporting soot mass based on FSN for low soot formation regimes like LTC is improved for both petroleum diesel and biodiesel fuels.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In