0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Regulated and Unregulated Exhaust Emissions From a Fleet of Multi-Fuel Solid Resource Collection Vehicles

[+] Author Affiliations
Arvind Thiruvengadam, Daniel K. Carder, Mohan Krishnamurthy, Mridul Gautam

West Virginia University, Morgantown, WV

Paper No. ICEF2010-35053, pp. 139-147; 9 pages
doi:10.1115/ICEF2010-35053
From:
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • ASME 2010 Internal Combustion Engine Division Fall Technical Conference
  • San Antonio, Texas, USA, September 12–15, 2010
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-4944-6 | eISBN: 978-0-7918-3882-2
  • Copyright © 2010 by ASME

abstract

The refuse truck segment of the heavy duty diesel vehicle population has been identified as the most fuel inefficient sector. This is predominantly due to the stop and go driving pattern associated with these trucks. Constantly evolving emissions norms are forcing large truck fleet operators to explore the economic viability of alternative fueled vehicles to combat the increasing operating costs in terms of retrofit requirements of heavy-duty diesel vehicles. The objective of this study was to determine the emissions benefits and the economic viability of introducing liquefied natural gas (LNG), and LNG-Ultra-low sulfur diesel (ULSD) dual-fueled vehicles into the solid resource collection vehicle fleet (SRCV) in the city of Los Angeles. The 12 vehicles tested in this study were part of a multi-fuel refuse truck fleet. It should be noted that these vehicles are not representative of the state-of-the-art advanced technology engines that power the present day fleets. Vehicles were exercised over the AQMD refuse truck cycle and a newly developed compaction cycle on a heavy-duty chassis dynamometer. Regulated emissions together with a whole spectrum of unregulated speciation including the analysis of 1,3 butadiene with an on-site gas chromatograph was performed. Results showed that PM distance-specific mass emissions from LNG-fueled vehicles were on an average 82% lower than diesel trucks equipped with a DPF. Chemical speciation of exhaust from different fueled trucks indicated a characteristic emissions profile specific to the fuel used in these vehicles. While emissions from LNG vehicles were characterized by carbonyls, and other lower chain hydrocarbon compounds, emissions from diesel vehicles were dominated by polyaromatic hydrocarbons (PAH) and higher chain hydrocarbons.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In